nome|cognome|affiliazione|email|conferenziere|titolo|abstract|commento| Laura|Guidotti|Dip. di Matematica, Università di Bologna|laura.guidotti@unibo.it|0|||| Paola|Piu|Università di Cagliari|piu@uica.it|0|||| Mario|Landucci|Università di Firenze|mario.landucci@unifi.it|0|||| Luca|Musolesi||musolesi@sphaeraweb.com|0|||| Mirko|Degli Esposti|Dip. di Matematica, Università di Bologna|desposti@dm.unibo.it|0|||| Marisa|Grieco|Università di Pavia|marisa.grieco@unipv.it|0|||| Barbara|Di Fabio|Dip. di Matematica, Università di Bologna|barbix@freemail.it|0|||| Filippo|Medri|Dip. di Scienze dell'Informazione, Università di Bologna|medri@cs.unibo.it|0|||| Alessandra|Micheletti|Dip. di Matematica e Centro ADAMSS, Università di Milano|alessandra.micheletti@unimi.it|1|Statistical Shape Analysis and Applications|In applications, objects rarely have exactly the same shape within measurement error; hence the randomness of shapes need to be taken into account. Thanks to the development of information technologies, the last decade has seen a considerable growth of interest in the statistical theory of shape and its application to various scientific areas. The solution to the problem of describing a “shape” via functions taking values in a finite dimensional space, without loosing relevant information, is needed for the mathematical and statistical analysis of the objects.Recently new geometrical descriptors of shapes, the size functions, have been proposed. These functions are able to capture “globally” the geometric characteristics of an object, differently from landmarks (which usually are specific points, angles, distances, Â… on the objects, chosen by an expert), which are widely used in literature, but whose results in the statistical analysis are strongly dependent on their choice, leading to a sort of subjective quantitative analysis.Size functions depend on the choice of a measuring function, and usually only a small number of choices lead to different statistical results; the measuring functions are chosen on the basis of the invariance properties that the geometrical descriptors must satisfy (e.g. invariance with respect to rotations, translations, scaling, etc.).The theory of size functions has been developed mainly in a deterministic framework. A first attempt of joining this theory with randomness and to develop the related statistical analysis is here presented. The approximation of size functions with their discrete counterpart leads to the formulation of suitable algorithms which may compute a graphical representation of the size function associated with a shape. The main features of the shape are thus described by a finite number of points and lines on a plane. The descriptor is robust, since small variations in the shape produce small variations in the location of such points and lines. Thus, by applying some cluster analysis techniques, it is possible to find 2D confidence regions for a family of shapes, and to detect the presence of outliers, i.e. of shapes not belonging to the family under study. Applications to problems arising in microlithograpy and biomedicine will be presented.|| Ignacio|Gallo|dipartimento di matematica universita` di bologna|nonvenire@hotmail.com|0|||| Daniela|Giorgi|IMATI-CNR, Genova|giorgid@dm.unibo.it|0|||| Cristian|Secchi|Dip. di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia|secchi.cristian@unimore.it|0|||| Francesca|Cagliari|Dip. di Matematica, Università di Bologna|cagliari@dm.unibo.it|0|||| Lorenzo|Borghi|Dip. di Matematica, Università di Bologna|borghi_lorenzo@hotmail.it|0|||Studente secondo anno laurea specialistica| Alessia|Cattabriga|Dip. di Matematica, Università di Bologna|cattabri@dm.unibo.it|0|||| Claudio|Bartolone|Dip. di Matematica e Applicazioni, Università di Palermo|cg@math.unipa.it|0|||| Cristina|Imperato|Dip. di Matematica, Università di Bologna|imperato@dm.unibo.it|0|||| Andrea|Toso|Magneti Marelli Powertrain SpA|andrea.toso@magnetimarelli.com|0|||| Donatella|Giuliani|Università di Milano|giulianidonatella@libero.it|0|||| Claudio|Fontanari|Politecnico di Torino|claudio.fontanari@polito.it|0|||| Alberto|Parmeggiani|Dip. di Matematica, Università di Bologna|parmeggi@dm.unibo.it|0|||| Nadaniela|Egidi|Università di Camerino|nadaniela.egidi@unicam.it|1|Grid generation and the heat equation|We consider the grid generation problem. For the solution of this problem we propose an iterative procedure resembling the explicit difference schemes for the heat equation, where, starting from a preliminary version of the grid under consideration a sequence of grid is considered. In particular, the solution of the grid generation problem is computed as the limit of such a sequence.This approach gives an effective procedure to generate smooth grids when the domain is convex. For non-convex domains the procedure usually produces folded grids, since this iterative schemes does not take into account the curvature of the grid induced by the concavity of the domain, so we have to add a correction term that depends on the boundary of the domain under consideration.|| Antonio|Pasini|Facoltà di Ingegneria, Università di Siena|pasini@unisi.it|0|||| Gloria|Rinaldi|Università di Modena e Reggio Emilia|rinaldi.gloria@unimore.it|1|Applications of finite geometries to information security|Many problems in information security can be resolved using combinatorial structures and geometries. I look at some models which give efficient solutions to the problem of key management in a cryptosystem.|| Arrigo|Bonisoli|Università di Modena e Reggio Emilia|bonisoli.arrigo@unimore.it|0|||Cordiali saluti| Pierluigi|Maponi|Dip. di Matematica e Informatica, Università di Camerino|pierluigi.maponi@unicam.it|0|||| Tiziana|Raparelli|Dip. di Matematica, Università di Bologna|raparel@dm.unibo.it|0|||| Laura|Poggiolini|Dip. di Matematica Applicata "Giovanni Sansone", Università di Firenze|laura.poggiolini@unifi.it|0|||| Francesco|Mugelli|Dip. di Matematica Applicata "Giovanni Sansone", Univ. di Firenze|francesco.mugelli@math.unifi.it|0|||| caterina|cumino|Dip. di Matematica, Politecnico di Torino|caterina.cumino@polito.it|0|||| Alfonso|Tortora|Dip. di Matematica, Università di Milano |Alfonso.Tortora@mat.unimi.it|1|A geometric approach to the trifocal tensor|We give a full set of constraints for the trifocal tensor,using tecniques of algebraic geometry.|| Davide|Barbieri|Dip. di Matematica, Università di Bologna|barbier@dm.unibo.it|0|||| Pier Luigi|Papini|Dip. di Matematica, Università di Bologna|papini@dm.unibo.it|0|||| Luigia|Puccio|Dip. di Matematica, Università di Messina|gina@dipmat.unime.it|0|||| Nicola|Sansonetto|Dip. di Matematica Pura e Applicata, Università di Padova|sanson@math.unipd.it|0|||| CRISTINA|TURRINI|Dip. di Matematica, Università di Milano|cristina.turrini@mat.unimi.it|1|Critical configurations for 1-view projections from P^k to P^2|With some tools from algebraic geometry, critical configurations for 1-view projections from P^k to P^2 are described, together with their connections to the problem of reconstructing dynamical scenes. |presentazione orale in italiano, slides in inglese.| elena|franchini|Università di Bologna|elena.franchini@inwind.it|0|||per motivi personali non assicuro la presenza| Raul Paolo|Serapioni|Dip. di Matematica, Università di Trento|serapion@science.unitn.it|0|||| Ludovico|Ausiello|ARCES, Università di Bologna|lausiello@arces.unibo.it|0|||| Nicola|Arcozzi|Dip. di Matematica, Università di Bologna|arcozzi@dm.unibo.it|0|||| Luca|Pieressa|Dip. di Matematica, Università di Bologna|pieressa@libero.it|0|||| Daniele|Gazzola|ARCES, Università di Bologna|dgazzola@arces.unibo.it|0|||| Alessandro|Gambini|Dip. di Matematica, Università di Bologna|gamballs@libero.it|0|||non assicuro la mia presenza| Mirella|Manaresi|Dip. di Matematica, Università di Bologna|manaresi@dm.unibo.it|0|||| Andrea|Vietri|Dip. MeMoMat, Università di Roma "La Sapienza"|vietri@dmmm.uniroma1.it|1|From Phonetics to Combinatorics using Voronoi diagrams and graphs|Vowels can be represented in a 2-dimensional space using their basic acoustic data. Such a representation, well known by phoneticians, lends itself to a suggestive interpretation in a Euclidean context. Every vowel determines indeed its own ''territory'', so that the acoustic plane is divided into regions - the Voronoi domains. Interactions between vowel inventories of different languages can then be easily described in a graphtheoretical fashion.|| Luciano|Gualandri|Dip. di Matematica, Università di Bologna|gualan@dm.unibo.it|0|||| Silvia|Abrescia|Dip. di Matematica Università di Bologna|abrescia@dm.unibo.it|0|||| marta|nairuscone||marta.nairuscone@unicatt.it|0|||info iscrizione metodi geometrici nelle applicazioni e nell'industria di sabato quiattro marzo| Riccardo|Piergallini|Università di Camerino|riccardo.piergallini@unicam.it|0|||| Luigi|Grasselli|Dip. di Scienze e Metodi dell'Ingegneria, Univ. di Modena e Reggio Emilia|grasselli.luigi@unimore.it|0|||| Francesca|Incensi|Dip. di Matematica, Università di Bologna|incensi@dm.unibo.it|0|||| Gregorio|Chinni|Dip. di Matematica, Università di Bologna|chinni@dm.unibo.it|0|||| Chiara|Farinelli|Dip. di Matematica, Università di Bologna|farinelli@dm.unibo.it|0|||| Andrea|Cerri|ARCES & Dip. di Matematica, Università di Bologna|cerri@dm.unibo.it|1|Retrieval of trademark abstract images by means of Size Functions|We propose a new, effective system for content-based trademark retrieval, which involves Size Functions, a geometrical-topological tool for shape description and matching. Three different classes of shape descriptors are combined, for a total amount of 25 measuring functions. The evaluation has been performed on a benchmark database of 10,745 real trademark images, supplied by the UK Patent Office.|| Gilberto|Bini|Dip. di Matematica Università di Milano|bini@mat.unimi.it|0|||| Edie|Miglio|MOX - Dip. di Matematica, Politecnico di Milano|edie.miglio@polimi.it|1|Shape reconstruction and fairing using univariate and bivariate integral spline operators |In this talk we present a particular integral spline operators characterized by the presence of a shape parameter. Some applications concerning curve and surface reconstruction and fairing are presented. |Presentazione PowerPoint che richiederà un proiettore.| Giuseppe|Mazzuoccolo|Università di Modena e Reggio Emilia|mazzuoccolo@unimore.it|0|||| Luca|Bassi|DEIS, Università di Bologna|lbassi@deis.unibo.it|1|Port-based modelling and control of complex dynamic systems|- The port-Hamiltonian formalism: power, ports and interconnections- Hamiltonian formulation for infinite-dimensional systems- Modelling examples: flexible mechanical structures- Control by interconnection and IDA-PBC|| Alessandro|Sarti|DEIS, Università di Bologna|asarti@deis.unibo.it|0|||| Giuseppe|Desco|Corghi SpA, Correggio (RE)|g.desco@corghi.com|0|||| Stefano|Campi|Università di Siena|campi@dii.unisi.it|0|||| Emanuela|Ughi|Università di Perugia|ughi@dipmat.unipg.it|1|Geometry in a mathematical exhibition|Geometers often “see” mathematical ideas through images in their minds, but sometimes it is hard to explain such images by words; I tried to avoid this difficulty by making “mathematicalmodels”,very simple, with poor materials, and offered them in an travelling exhibition to a large public.My talk will be a report on this experience.|Qualche tavolo, per esporre alcuni oggetti "matematici"| Gregorio|Franzoni|Università di Cagliari|gregoriofranzoni@yahoo.it|1|MODELS OF SURFACES:WHY AND HOW TO BUILD THEM |Mathematical objects have been represented, visualizedand animated in very effective ways in the last 20 years. Computergraphics turned out to be a powerful tool to improveunderstanding of Geometry of curves and surfaces and to attract peopleto Mathematics. Physical modeling of geometric shapes canbe seen as the natural outgrowth of virtual modeling: materialmodels enhance our spatial perception of those objects by adding thetactile experience to the visual one. In several occasions visual and material representations of mathematical objects played a central role in researchdevelopment. We present some famous models of surfaces, from the times of Galileo until now, and some models we built up by means of several techniques and materials: plaster, wires, paper, metal, 3D printing.|| Andrea|Tommasoli|Università di Bologna|tommasoli@dm.unibo.it|0|||| Andrea Giovanni|Cutti|Centro Protesi - INAIL, Bologna|agcutti@deis.unibo.it|1|Application of geometric methods in motion analysis|The presentation will briefly introduce to the mathematic background required for motion analysis. In particular two examples will addressed: the application of the Delaunay tessellation in computed aided surgery and the solution of the "hand-eye calibration problem" for motion systems "syncronisation". || Giuseppe|Patanà©|Ist. di Matematica Applicata e Tecnologie Informatiche - CNR, Genova|patane@ge.imati.cnr.it|1|Global Parameterization of Triangulated Surafaces|The global parameterization of a triangulated surface M consists of embedding the mesh on a planar domain by reducing it to a disc-like surface trough a cut-graph. Previous work has been focused on closed surfaces and the use of mesh transversal techniques for the evaluation of the geodesic metric has brought to build cut-graphs which are badly affected by the mesh connectivity and surface sampling. In this talk, we propose a simple method for finding a family of cut-graphs of M and guided by several criteria which have benefits on applications such as remeshing and texture mapping. We show that closed and bordered surfaces can be processed by a unique approach, which is stable with respect to the surface sampling and connectivity.|| Simonetta|Abenda|Dip. di Matematica Università di Bologna|abenda@ciram.unibo.it|0|||| Francisco J.|Leon Trujillo|Dip. MeMoMat, Università di Roma "La Sapienza"|leon@dmmm.uniroma1.it|0|||| Simona|Bonvicini|Università di Modena e Reggio Emilia|bonvicini.simona@unimore.it|0|||| Laura|Papaleo|Dip. di Informatica e Scienze dell'Informazione, Università di Genova|papaleo@disi.unige.it|0|||| Giovanna|Citti|Dip. di Matematica, Università di Bologna|citti@dm.unibo.it|1|Subriemannian geometry for the description of the visual cortex|We present a mathematical model of perceptual completion introduced togetherwith A. Sarti.The structure of the visual cortex is modelled as the Lie group of rototranslations.The initial image is lifted by the simple cells to a surface in this groupand the completion process is modeled via a diffusion driven motion by curvature.This model can be alternatively considered as a lifting of the classicalelastica model.|| Fabio|Ancona|Dip. di Matematica & CIRAM, Università di Bologna|ancona@ciram.unibo.it|0|||| Ruediger|Achilles|Dip. di Matematica, Università di Bologna|achilles@dm.unibo.it|0|||| Daniele|Fontanelli|Centro Interdip. di Ricerca "E. Piaggio", Università di Pisa|daniele.fontanelli@ing.unipi.it|1|A differential geometric approach for the control of nonholonomic mobile systems|In the past, analysis and design of linear systems have taken advantage of results conveyed by many theoretical fields, such as the Laplace transform, the complex variable theory and the linear algebra. Differential geometry plays the same important role with respect to nonlinear control systems analysis. Indeed, from the point of view of the interaction between input and state and/or state and output, it allows the extension of some fundamental properties of linear systems like reachability and observability. From a feedback control design perspective, instead, it contributed with the local coordinates transformation for exact feedback linearization or state feedback via Lyapunov design. Differential geometric approach represents a fundamental tool also for the analysis of a class of nonholonomic, input-affine systems, such as standard mobile platforms, whose control is hard to design due to the Brockett theorem.|| Alessandra|Masala||a_masala2003@yahoo.it|0|||| Monica|Cognoli|Dip. di Matematica, Università Roma III|corusgraal@libero.it|0|||| Gonzalo|Sanguinetti|DEIS, Università di Bologna|gsangui@fing.edu.uy|0|||| Diego|Grandi|Dip. di Matematica, Università di Bologna|grandi@dm.unibo.it|0|||| Francesco|Regonati|Dip. di Matematica, Università di Bologna|regonati@dm.unibo.it|0|||| Giovanni|Marro|DEIS, Università di Bologna|gmarro@deis.unibo.it|0|||| Herbert|Edelsbrunner|Duke University|m@m|0|||| Lisbeth|Fajstrup|Aalborg Universitet|n@n|0|||| Massimo|Ferri|ARCES & Dip. di Matematica, Università di Bologna|ferri@dm.unibo.it|0|||| Patrizio|Frosini|ARCES & Dip. di Matematica, Università di Bologna|a@a|0|||| Claudia|Landi|Università di Modena e Reggio Emilia|a@a|0|||| Ottavio|Rizzo|Università di Milano|Ottavio.Rizzo@mat.unimi.it|0|||| Marco|Debernardi|Università del Piemonte Orientale|marco.debernardi@mfn.unipmn.it|0|||Arrivo a Bologna alle 8.59 (se i treni non mi tradiscono). Ho letto che lo sciopero del 4 marzo è sospeso.| Mario|Primicerio|SIMAI|a@a|0|||| Gianni|borghesan|DEIS, Università di Bologna|gborghesan@deis.unibo.it|0|||| Carolina|Beccari|Università di Bologna|beccari@dm.unibo.it|0||||